Lecture 5 - Monday, January 23

Announcements

- Assignment 1 to be released tonight
$\zeta b p m \sim d p m$

Lecture

Asymptotic Analysis of Algorithms

Asymptotic Upper Bound
n v.. In \rightarrow innet 5 \rightarrow asimproticaly,

theylue jas
$\left(n+2 n \cdot \log n+3 n^{2}\right.$
tming of in" $O(n)$
approximatl the abare

RT
$f(n)=5$

$$
\begin{aligned}
& f(0)=5 \\
& f(10)=5 \\
& f((11)=5
\end{aligned}
$$

frad Max

$$
\begin{aligned}
& \rightarrow \frac{r_{n}-2}{\rightarrow(1) \# \text { Pos }} \\
& \text { e.g. } n=1 \rightarrow 5 \mathrm{Pos} \\
& n=10 \rightarrow \text { bf } \mathrm{FO}
\end{aligned}
$$

(2) relative $R T$

Tolynomial: n^{d}

$$
d \geqslant 2
$$

 (further maripulation on g(an) exppection
Goal Trae $f(n)$ is $O(g(n))$

Asymptotic Upper Bound: Big-O

Example:
$f(n)=8 n+5$
$g(n)=(n)$ ref. fun c
Ton

Prove:
$f(n)$ is $O(g(n))$

Choose:
$\mathrm{c}=9$
What about no?

Asymptotic Upper Bound: Example
$f(n)$ is $O(g(n))$
multiplicative calcite

$$
f(n)=\frac{R T}{5} n^{4}+3 n^{3}+2 n^{2}+4 n+1 \cdot n^{0}
$$

(1) Guess: $f(n)$ is $O\left(n^{4}\right)$
(2) Prove:
chose $l:|5|+|3|+|2|+|4|+|1|=15$
choose no: I.

Lecture

Asymptotic Analysis of Algorithms

Asymptotic Upper Bounds of Math Functions

Asymptotic Upper Bounds: Example (1)

$$
5 n^{2}+3 n \cdot \log n+2 n+5 \text { is } O(\square
$$

Problem State and prove the asymptotic upper bound of the above functorn.
(1) $O\left(n^{2}\right)$
rarity:
(2) Trave by choosing:

$$
\begin{aligned}
& \begin{array}{l}
f(n) \leq 15 \cdot \ln \mid+2.1+5 \\
5 \cdot 1^{2}+3.1 \cdot \frac{10}{}
\end{array} \\
& C=|5|+|3|+|2|+|5|=12 \frac{5}{15 \cdot 1}=15 \\
& n_{0}=\text { (1) }
\end{aligned}
$$

